Search results for "Effective Field Theory"
showing 10 items of 212 documents
$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation
2019
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…
New physics in $B$ meson mixing: future sensitivity and limitations
2020
The mixing of neutral mesons is sensitive to some of the highest scales probed in laboratory experiments. In light of the planned LHCb Upgrade II, a possible upgrade of Belle II, and the broad interest in flavor physics in the tera-Z phase of the proposed FCC-ee program, we study constraints on new physics contributions to Bd and Bs mixings which can be obtained in these benchmark scenarios. We explore the limitations of this program, and identify the measurement of |Vcb| as one of the key ingredients in which progress beyond current expectations is necessary to maximize future sensitivity. We speculate on possible solutions to this bottleneck. Given the current tension with the standard mo…
The role of the $\Delta(1232)$-resonance in covariant baryon chiral perturbation theory
2013
We stress, on theoretical and phenomenological grounds, the importance of the $\Delta(1232)$-resonance in a chiral effective field theory approach applied to the study of $\pi N$ scattering. We show how its inclusion as a dynamical degree of freedom allow us to obtain reliably valuable information from $\pi N$ scattering data.
Long-range chiral dynamics of Λ-hyperon in nuclear media
2008
We extend a chiral effective field theory approach to the Λ-nuclei interaction with the inclusion of the decuplet baryons. More precisely, we study the contributions due to the long-range two-pion exchange, with Σ and Σ* baryons in the internal baryonic lines considering Nh and Δh excitations. In particular, central and spin-orbit potentials are studied. For the former, regularization is needed and physical values of the cut-off give a large attraction, becoming necessary to include the repulsion of other terms not considered here. For the latter, in a model-independent framework, the inclusion of the decuplet supports the natural explanation of the smallness of the Λ-nuclear spin-orbit ter…
Effect of three-body forces on response functions in infinite neutron matter
2015
International audience; We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation (RPA) from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the non-central part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two- and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.
Unequal rapidity correlators in the dilute limit of the JIMWLK evolution
2019
We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the color glass condensate effective field theory. We discuss a diagrammatic interpretation of the long-range con elators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin…
Implementation of local chiral interactions in the hyperspherical harmonics formalism
2021
With the goal of using chiral interactions at various orders to explore properties of the few-body nuclear systems, we write the recently developed local chiral interactions as spherical irreducible tensors and implement them in the hyperspherical harmonics expansion method. We devote particular attention to three-body forces at next-to-next-to leading order, which play an important role in reproducing experimental data. We check our implementation by benchmarking the ground-state properties of $^3$H, $^3$He and $^4$He against the available Monte Carlo calculations. We then confirm their order-by-order truncation error estimates and further investigate uncertainties in the charge radii obta…
Path integral quantization for massive vector bosons
2010
A parity-conserving and Lorentz-invariant effective field theory of self-interacting massive vector fields is considered. For the interaction terms with dimensionless coupling constants the canonical quantization is performed. It is shown that the self-consistency condition of this system with the second-class constraints in combination with the perturbative renormalizability leads to an SU(2) Yang-Mills theory with an additional mass term.
Effective-field-theory predictions of the muon-deuteron capture rate
2018
We quantify the theoretical uncertainties of chiral effective-field-theory predictions of the muon-deuteron capture rate. Theoretical error estimates of this low-energy process is important for a reliable interpretation of forthcoming experimental results by the MuSun collaboration. Specifically, we estimate the three dominant sources of uncertainties that impact theoretical calculations of this rate: those resulting from uncertainties in the pool of fit data used to constrain the coupling constants in the nuclear interaction, those due to the truncation of the effective field theory, and those due to uncertainties in the axial radius of the nucleon. For the capture rate into the ${}^1S_0$ …
Proposal for a running coupling JIMWLK equation
2014
In the CGC framework the initial stages of a heavy ion collision at high energy are described as "glasma" field configurations. The initial condition for these evolving fields depends, in the CGC effective theory, on a probability distribution for color charges. The energy dependence of this distribution can be calculated from the JIMWLK renormalization group equation. We discuss recent work on a practical implementation of the running coupling constant in the Langevin method of solving the JIMWLK equation.